2022-03-25 13:20:15 +01:00
\chapter { OlaFlow}
\section { 2D Model}
A 2Dv model was built on a small domain around the breakwater (\SI { 250} { \m }
from the crest).
A tool that allows mapping the output fields from swash to the initial fields
2022-03-28 11:08:44 +02:00
in olaFlow was built. Alpha.water and U fields are mapped from swash to
olaFlow.
2022-04-15 13:42:29 +02:00
Boundary conditions are set using the output from the swash model.
A regular mesh is generated and snapped to the bathymetry (mesh resolution: \SI { .5} { \m } ).
Simulation is run for 400 seconds using the largest wave from the swash model with the buoy spectrum as an input
(\autoref { fig:wave} ).
\begin { figure}
\centering
\includegraphics { wave.pdf}
\caption { Boundary condition for olaflow model.} \label { fig:wave}
\end { figure}
Results are plotted using python \autoref { fig:resola} .
\begin { figure}
\centering
\includegraphics { resola.pdf}
\caption { Results from olaFlow model.} \label { fig:resola}
\end { figure}
2022-05-06 11:39:37 +02:00
\subsection { Porosity parameters}
Several parameters should be calibrated in order to accurately model the porous media: $ a $ , $ b $ and $ c $ are friction
parameters in Forcheimer's equation; D50 is the median diameter of the elements constituting the porous media; $ p $ is
the porosity of the media.
7 cases were run with the values in \autoref { tab:porotest} .
\begin { table}
\centering
\begin { tabular} { cccccc}
\toprule
\textbf { Case} & $ a $ & $ b $ & $ c $ & D50 (\si { \m } ) & $ \phi $ \\
\midrule
\textbf { 0} & \num { 50} & \num { 1.2} & \num { 0.34} & \num { 4} & \num { 0.4} \\
\textbf { 1} & \intersemibold \num { 0} & \num { 1.2} & \num { 0.34} & \num { 4} & \num { 0.4} \\
\textbf { 2} & \intersemibold \num { 5000} & \num { 1.2} & \num { 0.34} & \num { 4} & \num { 0.4} \\
\textbf { 3} & \num { 50} & \intersemibold \num { 0} & \num { 0.34} & \num { 4} & \num { 0.4} \\
\textbf { 4} & \num { 50} & \intersemibold \num { 3.0} & \num { 0.34} & \num { 4} & \num { 0.4} \\
\textbf { 5} & \num { 50} & \num { 1.2} & \num { 0.34} & \intersemibold \num { 2} & \num { 0.4} \\
\textbf { 6} & \num { 50} & \num { 1.2} & \num { 0.34} & \num { 4} & \intersemibold \num { 0.25} \\
\bottomrule
\end { tabular}
\caption { Test cases for porosity parameters.} \label { tab:porotest}
\end { table}
Some results are displayed in \autoref { fig:diff} and \autoref { fig:diff2} . No major differences are noticable
between cases (excepted for case 3, where $ b = 0 $ ).
\begin { figure}
\centering
\includegraphics { diff.pdf}
\caption { Tests for porosity parameters; water - air border at \SI { -50} { \m } .} \label { fig:diff}
\end { figure}
\begin { figure}
\centering
\includegraphics { diff2.pdf}
\caption { Tests for porosity parameters; water - air border at \SI { -20} { \m } .} \label { fig:diff2}
\end { figure}
2022-05-06 14:10:56 +02:00
Another run with a different value for $ b $ was made (\autoref { tab:porotestb} ). Results are in \autoref { fig:diff3b} .
The value of $ b $ seems to have a major effect how wave energy is dissipated / how waves break, as seen in
\autoref { fig:diff3b175} .
\begin { table}
\centering
\begin { tabular} { cccccc}
\toprule
\textbf { Case} & $ a $ & $ b $ & $ c $ & D50 (\si { \m } ) & $ \phi $ \\
\midrule
\textbf { 0} & \num { 50} & \num { 1.2} & \num { 0.34} & \num { 4} & \num { 0.4} \\
2022-05-06 14:11:29 +02:00
\textbf { 1} & \num { 50} & \intersemibold \num { 0} & \num { 0.34} & \num { 4} & \num { 0.4} \\ % 3
\textbf { 2} & \num { 50} & \intersemibold \num { 0.2} & \num { 0.34} & \num { 4} & \num { 0.4} \\ % 3b
2022-05-06 14:10:56 +02:00
\bottomrule
\end { tabular}
\caption { Test cases for porosity parameters.} \label { tab:porotestb}
\end { table}
\begin { figure}
\centering
\includegraphics { diff3b.pdf}
\caption { Tests for porosity parameters; water - air border at \SI { -20} { \m } .} \label { fig:diff3b}
\end { figure}
\begin { figure}
\centering
\includegraphics { diff3b175.pdf}
\caption { Tests for porosity parameters; water - air border at \SI { 175} { \s } .} \label { fig:diff3b175}
\end { figure}
2022-05-06 14:47:19 +02:00
\subsection { Turbulence model}
A case with the $ k - \omega $ SST turbulence model was run to compare with the $ k - \varepsilon $ model.
Results displayed in \autoref { fig:sst} . Significant differences are found between both models.
2022-05-06 14:54:12 +02:00
Wave breaking as expected using SST model (\autoref { fig:sst175} ). See
\url { https://public.edgarpierre.fr/anim_ olaflow_ kom.mp4}
2022-05-06 14:47:19 +02:00
\begin { figure}
\centering
\includegraphics { diffsst.pdf}
2022-05-06 14:54:12 +02:00
\caption { $ x = \SI { - 50 } { \m } $ . Case 1: $ k - \varepsilon $ model; case 2: $ k - \omega $ SST model.} \label { fig:sst}
\end { figure}
\begin { figure}
\centering
\includegraphics { diffsst175.pdf}
\caption { $ t = \SI { 175 } { \s } $ . Case 1: $ k - \varepsilon $ model; case 2: $ k - \omega $ SST model.} \label { fig:sst175}
2022-05-06 14:47:19 +02:00
\end { figure}
2022-05-09 13:21:34 +02:00
\subsection { Results}
Maximum flow velocity is displayed in \autoref { fig:maxu} .
\begin { figure}
\centering
\includegraphics { maxu.pdf}
\caption { Maximum velocity.} \label { fig:maxu}
\end { figure}
2022-05-09 13:30:05 +02:00
The flow reaches \SIrange { 15} { 20} { \m \per \s } velocity, which is in accordance with results from \textcite { amir} .