This repository has been archived on 2025-05-05. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
internship/data/processing/projection.py

83 lines
2 KiB
Python
Raw Normal View History

import argparse
import configparser
import logging
import pathlib
import matplotlib.pyplot as plt
import numpy as np
from scipy import interpolate
from .lambert import Lambert
parser = argparse.ArgumentParser(description="Pre-process bathymetry")
parser.add_argument("-v", "--verbose", action="count", default=0)
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("bathy")
log.info("Starting bathymetry pre-processing")
config = configparser.ConfigParser()
config.read("config.ini")
bathy_inp = pathlib.Path(config.get("bathy", "sub"))
bathy_out = pathlib.Path(config.get("bathy", "out"))
log.info(f"Loading bathymetry from {bathy_inp}")
bathy_curvi = np.load(bathy_inp)
projection = Lambert()
bathy = np.stack(
(
*projection.cartesian(bathy_curvi[:, 0], bathy_curvi[:, 1]),
bathy_curvi[:, 2],
),
axis=1
)
log.debug(f"Cartesian bathy: {bathy}")
artha_curvi = np.array(
(config.getfloat("artha", "lon"), config.getfloat("artha", "lat"))
)
buoy_curvi = np.array(
(config.getfloat("buoy", "lon"), config.getfloat("buoy", "lat"))
)
artha = np.asarray(projection.cartesian(*artha_curvi))
buoy = np.asarray(projection.cartesian(*buoy_curvi))
def display():
x = np.linspace(bathy[:, 0].min(), bathy[:, 0].max())
y = np.linspace(bathy[:, 1].min(), bathy[:, 1].max())
X, Y = np.meshgrid(x, y)
Z = interpolate.griddata(
bathy[:, :2], bathy[:, 2], (X, Y), method="nearest"
)
fix, ax = plt.subplots()
ax.pcolormesh(X, Y, Z)
ax.scatter(*artha, c="k")
ax.scatter(*buoy, c="k")
ax.axis("equal")
return ax
D = np.diff(np.stack((artha, buoy)), axis=0)
x = np.arange(-150, np.sqrt((D**2).sum()) + 150)
theta = np.angle(D.dot((1, 1j)))
coords = artha + (x * np.stack((np.cos(theta), np.sin(theta)))).T
z = interpolate.griddata(bathy[:,:2], bathy[:,2], coords)
ax = display()
ax.scatter(*coords.T, c="k", marker=".")
fig_1d, ax_1d = plt.subplots()
ax_1d.plot(x, z)
plt.show(block=True)