This repository has been archived on 2025-05-05. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
internship/olaflow/processing/animate.py

81 lines
2.2 KiB
Python
Raw Normal View History

2022-04-13 14:08:55 +02:00
import argparse
import configparser
import logging
import pathlib
import pickle
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np
from scipy import interpolate
from .olaflow import OFModel
parser = argparse.ArgumentParser(description="Post-process olaflow results")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument("-c", "--config", default="config.ini")
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("ola_post")
log.info("Starting sws -> olaFlow converter")
config = configparser.ConfigParser()
config.read(args.config)
out = pathlib.Path(config.get("post", "pickle"))
out.parent.mkdir(parents=True, exist_ok=True)
with out.open("rb") as f:
model = pickle.load(f)
x0 = config.getfloat("post", "x")
z0 = config.getfloat("post", "z")
i0 = np.argmin(np.abs((model.x - x0) + 1j * (model.z - z0)))
X, Z = np.meshgrid(np.unique(model.x), np.unique(model.z))
C = np.where(
(model.x[:, None, None].astype(np.single) == X[None, :, :].astype(np.single))
& (model.z[:, None, None].astype(np.single) == Z[None, :, :].astype(np.single))
)
P = np.full((model.t.size, *X.shape), np.nan)
P[:, C[1], C[2]] = model.fields["porosity"][:, C[0]]
AW = np.full((model.t.size, *X.shape), np.nan)
AW[:, C[1], C[2]] = model.fields["alpha.water"][:, C[0]]
2022-04-13 14:18:40 +02:00
fig, ax = plt.subplots(figsize=(19.2, 10.8), dpi=100)
2022-04-13 14:08:55 +02:00
tit = ax.text(
0.5,
0.95,
f"t={model.t[0]}s",
horizontalalignment="center",
verticalalignment="top",
transform=ax.transAxes,
)
aw_m = ax.pcolormesh(X, Z, AW[0], vmin=0, vmax=1, cmap="Blues", zorder=1)
ax.pcolormesh(
X,
Z,
P[1],
vmin=0,
vmax=1,
cmap="Greys_r",
alpha=np.nan_to_num(1 - P[1])/2,
zorder=1.1,
)
ax.axhline(4.5, ls="-.", lw=1, c="k", alpha=0.2, zorder=1.2)
def anim(i):
2022-04-13 14:18:40 +02:00
tit.set_text(f"t={model.t[i]}s")
aw_m.set_array(AW[i])
2022-04-13 14:08:55 +02:00
return (aw_m,)
fig.colorbar(aw_m)
ax.set(xlabel="x (m)", ylabel="z (m)", aspect="equal", facecolor="#bebebe")
ax.grid(c="k", alpha=0.2)
2022-04-13 14:18:40 +02:00
ani = animation.FuncAnimation(fig, anim, frames=model.t.size)
ani.save(out.parent.joinpath("anim.mp4"), fps=24)