Biblio: models
This commit is contained in:
parent
623825baf7
commit
1a0f74103b
3 changed files with 225 additions and 6 deletions
|
@ -149,7 +149,7 @@ of the sensors, showing that the time delay between sensors leads to a peak in
|
|||
the reflection coefficient at a frequency related to this time delta.
|
||||
|
||||
%%% TODO? %%%
|
||||
%\begin{itemize} \item \cite{sheremet2002observations}: \end{itemize}
|
||||
% \cite{sheremet2002observations}
|
||||
|
||||
\subsection{Conclusion}
|
||||
|
||||
|
@ -170,10 +170,65 @@ should then be used to evaluate the reflection coefficient of the Artha
|
|||
breakwater and to separate the incident and reflected wave components from the
|
||||
measured data.
|
||||
|
||||
\section{Modeling wave impact on a breakwater}
|
||||
\section{Modelling wave impact on a breakwater}
|
||||
|
||||
Modelling rubble-mound breakwaters such as the Artha breakwater requires
|
||||
complex considerations on several aspects. First of all, an accurate of the
|
||||
fluid's behavior in the porous armour of the breakwater is necessary. Then,
|
||||
adequate turbulence models are needed in order to obtain accurate results.
|
||||
Several types of models have been developped that can be used to study breaking
|
||||
wave flow on a porous breakwater.
|
||||
|
||||
\subsection{SPH models}
|
||||
Smoothed-Particle Hydrodynamics (SPH) models rely on a Lagrangian
|
||||
representation of the fluid.
|
||||
|
||||
\subsubsection{Porosity modelling}
|
||||
|
||||
\cite{jiang2007mesoscale}
|
||||
\cite{jutzi2008numerical}
|
||||
\cite{shao2010}
|
||||
\cite{altomare2014numerical}
|
||||
\cite{kunz2016study}
|
||||
\textbf{\cite{ren2016improved}}
|
||||
\cite{pahar2016modeling}
|
||||
\cite{peng2017multiphase}
|
||||
\cite{wen20183d}
|
||||
\cite{kazemi2020sph}
|
||||
|
||||
\subsubsection{Wave generation}
|
||||
|
||||
\cite{yim2008numerical}
|
||||
\cite{altomare2017long}
|
||||
\cite{wen2018non}
|
||||
|
||||
\subsection{VARANS models}
|
||||
|
||||
\cite{van1995wave,troch1999development}
|
||||
|
||||
COBRAS \parencite{liu1999numerical}: spatially averaged RANS
|
||||
with $k-\varepsilon$ turbulence model. Drag forces modeled by empirical linear
|
||||
and non-linear friction terms; \cite{hsu2002numerical}: introduced VARANS in
|
||||
order to account for small scale turbulence inside the porous media.
|
||||
->
|
||||
COBRAS-UC/IH2VOF \parencite{losada2008numerical,lara2008wave}: VOF VARANS (2D);
|
||||
refactor of COBRAS code, with improved wave generation, improvement of input
|
||||
and output data.
|
||||
->
|
||||
IH3VOF \parencite{del2011three}: 3D VOF VARANS, updated porous media equations,
|
||||
optimization of accuracy vs computation requirements, specific boundary
|
||||
conditions, validation. Adding SST model.
|
||||
->
|
||||
IHFOAM/olaFlow \parencite{higuera2015application}: Rederivation of
|
||||
\cite{del2011three}, add time-varying porosity; Improvement to wave generation
|
||||
and absorption; implementation in OpenFOAM; extensive validation; application
|
||||
to real coastal structures.
|
||||
|
||||
\cite{vieira2021novel}: Use of artificial neural networks to determine porosity
|
||||
parameter for VOF VARANS model.
|
||||
|
||||
\subsection{Other}
|
||||
|
||||
BEM: \cite{hall1994boundary,koley2020numerical}
|
||||
|
||||
\section{Modeling block displacement}
|
||||
|
|
Reference in a new issue