Olaflow output pickling and animating

This commit is contained in:
Edgar P. Burkhart 2022-04-13 14:08:55 +02:00
parent 939bbb21ae
commit 66b2a272ff
Signed by: edpibu
GPG key ID: 9833D3C5A25BD227
4 changed files with 188 additions and 0 deletions

View file

@ -0,0 +1,80 @@
import argparse
import configparser
import logging
import pathlib
import pickle
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np
from scipy import interpolate
from .olaflow import OFModel
parser = argparse.ArgumentParser(description="Post-process olaflow results")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument("-c", "--config", default="config.ini")
args = parser.parse_args()
logging.basicConfig(level=max((10, 20 - 10 * args.verbose)))
log = logging.getLogger("ola_post")
log.info("Starting sws -> olaFlow converter")
config = configparser.ConfigParser()
config.read(args.config)
out = pathlib.Path(config.get("post", "pickle"))
out.parent.mkdir(parents=True, exist_ok=True)
with out.open("rb") as f:
model = pickle.load(f)
x0 = config.getfloat("post", "x")
z0 = config.getfloat("post", "z")
i0 = np.argmin(np.abs((model.x - x0) + 1j * (model.z - z0)))
X, Z = np.meshgrid(np.unique(model.x), np.unique(model.z))
C = np.where(
(model.x[:, None, None].astype(np.single) == X[None, :, :].astype(np.single))
& (model.z[:, None, None].astype(np.single) == Z[None, :, :].astype(np.single))
)
P = np.full((model.t.size, *X.shape), np.nan)
P[:, C[1], C[2]] = model.fields["porosity"][:, C[0]]
AW = np.full((model.t.size, *X.shape), np.nan)
AW[:, C[1], C[2]] = model.fields["alpha.water"][:, C[0]]
fig, ax = plt.subplots()
tit = ax.text(
0.5,
0.95,
f"t={model.t[0]}s",
horizontalalignment="center",
verticalalignment="top",
transform=ax.transAxes,
)
aw_m = ax.pcolormesh(X, Z, AW[0], vmin=0, vmax=1, cmap="Blues", zorder=1)
ax.pcolormesh(
X,
Z,
P[1],
vmin=0,
vmax=1,
cmap="Greys_r",
alpha=np.nan_to_num(1 - P[1])/2,
zorder=1.1,
)
ax.axhline(4.5, ls="-.", lw=1, c="k", alpha=0.2, zorder=1.2)
def anim(i):
tit.set_text(f"t={i[0]}s")
aw_m.set_array(i[1])
return (aw_m,)
fig.colorbar(aw_m)
ax.set(xlabel="x (m)", ylabel="z (m)", aspect="equal", facecolor="#bebebe")
ax.grid(c="k", alpha=0.2)
ani = animation.FuncAnimation(fig, anim, frames=zip(model.t, AW), interval=1 / 25)
plt.show()