import matplotlib.pyplot as plt import numpy as np from numpy import random import scipy.signal as sgl yi = random.normal(size=2**20) yr = 0.3 * np.roll(yi, -(2**10)) figy, axy = plt.subplots() axy.plot(np.arange(2**10, 2**11), yi[2**10 : 2**11]) axy.plot(np.arange(2**10, 2**11), yr[2**10 : 2**11]) figf, axf = plt.subplots() axf.plot(*sgl.welch(yi)) axf.plot(*sgl.welch(yr)) eta = yi + yr u = -yi + yr def puv(eta, u): f, phi_eta = sgl.welch(eta) phi_u = sgl.welch(u)[1] phi_eta_u = np.abs(sgl.csd(eta, u)[1].real) return f, np.sqrt( (phi_eta + phi_u - 2 * phi_eta_u) / (phi_eta + phi_u + 2 * phi_eta_u) ) figr, axr = plt.subplots() axr.plot(*puv(eta, u), label="Without noise") axr.plot( *puv( eta + 0.4 * random.normal(size=2**20), u + 0.4 * random.normal(size=2**20) ), label="With noise" ) axr.grid() axr.autoscale(True, "x", tight=True) axr.set(ylim=(0, 1), ylabel="R", xlabel="f") axr.legend(loc="lower left") axpsd = axr.twinx() axpsd.plot(*sgl.welch(eta), label=r"PSD ($\eta$)", c="k", alpha=0.2, lw=1) axpsd.legend(loc="lower right") axpsd.set(ylabel="PSD") plt.show()