This repository has been archived on 2025-05-05. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
internship/data/processing/zero_cross.py

164 lines
5.2 KiB
Python

import argparse
import configparser
import logging
import pathlib
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy as np
import scipy.signal as sgl
from scipy import fft
parser = argparse.ArgumentParser(description="Pre-process time-series")
parser.add_argument("-v", "--verbose", action="count", default=0)
parser.add_argument("-c", "--config", default="config.ini")
args = parser.parse_args()
logging.basicConfig()
log = logging.getLogger("bathy")
log.setLevel(max((10, 20 - 10 * args.verbose)))
log.info("Starting time-series pre-processing")
config = configparser.ConfigParser()
config.read(args.config)
inp_root = pathlib.Path(config.get("inp", "root"), "cerema/raw")
out_root = pathlib.Path(config.get("out", "root"))
out_root.mkdir(exist_ok=True)
raw_ts = []
#for tsi in sorted(inp_root.glob("2017022817*.raw")):
for tsi in sorted(inp_root.glob("*.raw")):
raw_ts.append(
np.loadtxt(
tsi,
dtype=[("state", int), ("z", float), ("y", float), ("x", float)],
delimiter=",",
max_rows=2304,
)
)
log.debug(f"Loading <{tsi}>")
n = len(raw_ts)
raw_ts = np.concatenate(raw_ts)
log.debug(f"{raw_ts=}")
t0 = np.linspace(0, 30 * 60 * n, 2304 * n, endpoint=False)
t = (t0 * 1e3).astype("timedelta64[ms]") + np.datetime64("2017-02-28T00:00")
if (errs := np.count_nonzero(raw_ts["state"])) != 0:
log.warning(f"{errs} transmission errors!")
log.debug(f"{dict(zip(*np.unique(raw_ts['state'], return_counts=True)))}")
# log.debug(f"{t[raw_ts['state'] != 0]}")
sos = sgl.butter(1, 0.2, btype="lowpass", fs=2305 / (30 * 60), output="sos")
z = sgl.sosfiltfilt(sos, raw_ts["z"]*1e-2)
cr0 = np.where(np.diff(np.sign(z)))[0]
wave = np.fromiter(
(
np.max(np.abs(z[cr0[i - 1] : cr0[i]])) + np.max(np.abs(z[cr0[i] : cr0[i + 1]]))
for i in range(1, len(cr0) - 1)
),
dtype=np.single,
)
log.debug(f"{wave=}")
log.debug(f"{t=}")
# plt.plot(t[cr0[1:-1]], wave)
nw = len(wave) / 2
nlw = np.sum(wave > 12)
H13 = np.quantile(wave, 2 / 3)
log.info(f"Number of waves: {nw}")
log.info(f"Number of waves >m: {nlw}")
log.info(f"Proportion: {nlw/nw:e}")
log.info(f"H1/3: {H13}m")
dt = 30 * 60 / 2304
# Mlims = (int(5 / dt), int(30 / dt))
N = t.size // 24
s0 = 2 * dt
dj = 0.5
J = 1 / dj * np.log2(N * dt / s0)
j = np.arange(0, J)
sj = s0 * 2 ** (j * dj)
# sj = s0 * np.arange(1, 2 ** (J * dj))
Mw = sj / dt
Mlims = sj[[0, -1]]
M = (np.abs(sgl.cwt(raw_ts["z"]*1e-2, sgl.morlet2, Mw))/np.var(raw_ts["z"]*1e-2))**2
# M = np.abs(sgl.cwt(z, sgl.morlet, Mw))
v = np.max(np.abs(M))
fig, ax = plt.subplots()
# ax2 = ax.twinx()
# ax.plot(t0, raw_ts["z"], lw=.5, c="k", alpha=.2)
# ax.plot(t0, z, ls="-.", lw=.25, alpha=.2, c="k")
st = raw_ts["state"][raw_ts["state"] != 0]
c = np.asarray(["g", "b", "r"])
# ax.vlines(t0[raw_ts["state"] != 0], -20, 20, colors=c[np.where(st != 777, st, 0)])
# ax.set(xlabel="t (s)", ylabel="z (cm)")
# ax.set(xlim=(17 * 3600 + 20 * 60, 17 * 3600 + 30 * 60))
ax.grid(c="k", alpha=0.2)
ax.set(zorder=1, frame_on=False)
ax.semilogy()
a = [t0[0], t0[-1], *Mlims]
# c = ax.imshow(M, extent=a, aspect="auto", cmap="plasma", vmin=0)
c = ax.contourf(t, sj, M, cmap="Greys", vmin=0, vmax=v)
fig.colorbar(c)
bigw = np.where(wave > 12)[0]
ym = 1.1 * np.max(np.abs(z))
for w in bigw:
fig, (ax2, ax) = plt.subplots(2, figsize=(15/2.54, 2/3*10/2.54), constrained_layout=True)
i0 = cr0[w] - int(1200 / dt)
i1 = cr0[w + 2] + int(1200 / dt)
# a = [t0[i0], t0[i1], *Mlims]
# c = ax2.imshow(M[:, i0:i1], extent=a, aspect="auto", cmap="Spectral", vmin=-v, vmax=+v)
c = ax2.contourf(
t[i0:i1],
sj,
M[:, i0:i1],
cmap="Greys",
vmin=0,
levels=[1, 2.5, 5, 10, 20, 40],
extend="both",
)
fig.colorbar(c, ax=ax2, label="NWPS")
ax.plot(t[i0:i1], (raw_ts["z"]*1e-2)[i0:i1], c="k", lw=1)
#ax.plot(t[i0:i1], z[i0:i1], c="k", lw=1, alpha=0.2, ls="-.")
# ax.vlines(t[raw_ts["state"] != 0], -20, 20, colors=c[np.where(st != 777, st, 0)])
ax.set(xlim=(t[i0], t[i1 - 1]), ylim=(-ym, ym))
ax2.set(ylabel="T (s)")
ax2.grid(c="k", alpha=0.2)
ax2.semilogy()
ax.grid(c="k", alpha=.2)
#ax.axhline(0, c="k", alpha=0.2, lw=1, ls="-.")
#ax.set(zorder=1, frame_on=False)
ax.set(xlabel="t (s)", ylabel="z (m)")
ax.axvspan(t[cr0[w]], t[cr0[w+2]], color="k", alpha=.1)
locator = mdates.AutoDateLocator(minticks=3, maxticks=7)
formatter = mdates.ConciseDateFormatter(locator)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
ax2.xaxis.set_major_locator(locator)
ax2.xaxis.set_major_formatter(formatter)
ax2.axes.set_xticklabels([])
ax2.set_rasterization_zorder(1.5)
fig.savefig(out_root.joinpath(f"wavelet{w}.pdf"), dpi=300)
fig.savefig(out_root.joinpath(f"wavelet{w}.png"), dpi=200)
#fig, ax = plt.subplots(constrained_layout=True)
## ax.plot(fft.rfftfreq(raw_ts["z"].size, dt), np.abs(fft.rfft(raw_ts["z"])), c="k", alpha=.2, lw=1)
#ax.plot(*sgl.welch(raw_ts["z"], 1 / dt), c="k", alpha=0.2, label="PSD")
#ax.plot(1 / sj, N * np.mean(M, axis=1), c="k", label="CWT")
## ax.grid(color="k", alpha=.2)
#ax.set(xlabel="T (s)", ylabel="PSD")
## ax2.set(ylabel="Average Wavelet Transform")
#ax.set(xlim=1 / Mlims)
#ax.legend()
plt.show()